	Indian Statistical Institute	
B. Math. (Hons.) III Year		
	I Semestral Examination 2010-2011	
	Differential Geometry (Back Paper)	
Duration: 3 Hours	Marks: 100	Instructor: B. Bagchi

- 1. (a) Let γ be a unit speed convex simple closed curve say with length l. Use the equation $n'_s = -k_s t$ to show that the signed curvature k_s of γ satisfies $\int_0^l k'_s(t)\gamma(t)dt = 0$.
 - (b) Use part (a) to prove the four vertex theorem.

(c) Show that any ellipse (which is not a circle) has at least four vertices.

[10 + 15 + 5 = 30]

2. Let $((a_{ij}))$ be a 3×3 skew symmetric matrix whose entries are smooth functions of a real parameter t. Let v_1, v_2, v_3 be smooth solutions of the differential equation

$$v'_i(t) = \sum_{j=1}^3 a_{ij} \ v_j(t), 1 \le i \le 3.$$

Show that if $\{v_i(t) : 1 \le i \le 3\}$ is an orthonormal basic for \mathbb{R}^3 at some point t, then the same is true at all points. [25]

3. Let $f: S_1 \longrightarrow S_2$ be a diffeomorphism between two smooth surfaces. Show that

(a) f is an isometry iff any two co-ordinate charts of S_1, S_2 which correspond under f ($i \cdot e, \sigma_2 = f \circ \sigma_1$) have the same first fundamental form.

(b) State and prove a similar criterion for f to be conformal.

[15 + 15 = 30]

4. State the formula for the area of a spherical triangle in terms of its angles. Use this formula to prove that V - E + F = 2 for any triangulation of the sphere. [5 + 10 = 15]